## The General Linear Model - ANOVA Part 1 (Video 4)

Dr Andrew J. Stewart

E: drandrewjstewart@gmail.com
T: @ajstewart_lang
G: ajstewartlang

## Factorial ANOVA

So far we have looked at ANOVA for designs when we have one factor which is between participants (i.e., each participant appears in only one condition), and for designs when we have one factor that is repeated measures (each participant appears in all conditions). These are examples of 1-way ANOVA.

Now we're going to look at factorial ANOVA - this is for cases where we have more than one factor and we might be interested in how the factors interact with each other. If we have two factors, we will build a 2-way ANOVA, three factors, a 3-way ANOVA etc.

## Factorial ANOVA

Imagine we have 2 factors. Factor 1 with two levels, Factor 2 with three. Our analysis might reveal a main effect of Factor 1 (i.e., a difference between the two levels), a main effect of Factor 2 (i.e., a difference between the three levels) or an interaction between the two.....

To examine what might be going on, we build a $2 \times 3$ ANOVA. The first number corresponds to the first factor and the number of levels it has (2) while the second corresponds to the second factor and the number of levels it has (3).

Following are examples of 'perfect' patterns of effects...

# Main effect of Factor 1, no main effect of Factor 2 and no interaction 

The
differences between levels I and 2 of Factor I are all
significant and are of the same magnitude.


# No main effect of Factor 1, main effect of Factor 2 and no interaction 

The differences between levels I \& 2 and 2 \& 3 of Factor 2 are all significant and are of the same magnitude.
There are no significant differences between levels I and 2 of Factor I.

Level I of factor I


## Main effect of Factor 1, main effect of Factor 2 and an interaction

The differences between the two levels of factor I change as a function of factor 2.


## No main effect of Factor 1, no main effect of Factor 2 but an interaction

The difference between levels I \& 2 of Factor I at Level I of Factor 2 is different from the same difference at Levels 2 and 3 of Factor 2. This is a crossover interaction as the polarity of the difference flips.

Level I<br>Level 2<br>Level 3<br>of factor 2 of factor 2 of factor 2

## Example Factorial ANOVA

Imagine the case where we're interested in the effect of positive vs. negative contexts on how quickly (in milliseconds) people respond to positive vs negative sentences. We think there might be a priming effect (i.e., people are quicker to respond to positive sentences after positive contexts vs. after negative contexts and vice versa).

So, we have two factors, each with two levels. This is what's known as a full factorial design where every subject participates in every condition.

## Reading in our Data

```
factorial_data <-
read_csv("https://raw.githubusercontent.com/ajstewartlang/11_glm_anova_pt1/
master/data/factorial_data.csv")
head(factorial_data)
# A tibble: 6 x 5
    Subject Item RT Sentence Context
        <dbl> <dbl> <dbl> <chr> <chr>
1 1 3 1270 Positive Negative
2 1 7 739 Positive Negative
3 1 11 982 Positive Negative
4 1 15 1291 Positive Negative
5 1 19 1734 Positive Negative
6 1 23 1757 Positive Negative
```


## Tidying our Data

```
factorial_data_tidied <- factorial_data %>%
    mutate(Sentence = factor(Sentence), Context = factor(Context))
head(factorial_data_tidied)
# A tibble: 6 x 5
    Subject Item RT Sentence Context
        <dbl> <dbl> <dbl> <fct> <fct>
1 1 3 1270 Positive Negative
2 1 7 739 Positive Negative
3 1 11 982 Positive Negative
4 1 15 1291 Positive Negative
5 1 19 1734 Positive Negative
6 1 23 1757 Positive Negative
```


## Summarising our Data

```
factorial_data_tidied %>%
    group_by(Context, Sentence) %>%
    summarise(mean_rt = mean(RT), sd_rt = sd(RT))
# A tibble: 4 x 4
# Groups: Context [2]
    Context Sentence mean_rt sd_rt
    <fct> <fct> <dbl> <dbl>
1 Negative Negative 1474. 729.
2 ~ N e g a t i v e ~ P o s i t i v e ~ N A ~ N A
    NA NA
    1579. 841.
```


## Do we have missing data?

```
vis_miss(factorial_data_tidied)
```



## Ignoring Missing Data

```
factorial_data_tidied %>%
    group_by(Context, Sentence) %>%
    summarise(mean_rt = mean(RT, na.rm = TRUE), sd_rt = sd(RT, na.rm =
TRUE))
# A tibble: 4 x 4
# Groups: Context [2]
    Context Sentence mean_rt sd_rt
    <fct> <fct> <dbl> <dbl>
1 Negative Negative 1474. 729.
2 Negative Positive 1595. 887.
3 Positive Negative 1633. 877.
4 ~ P o s i t i v e ~ P o s i t i v e ~ 1 5 7 9 . ~ 8 4 1 . ~
```


## Visualising our Data



## Modelling our Data - F1

```
model_subjects <- aov_4(RT ~ Context * Sentence + (1 + Context * Sentence |
Subject), data = factorial_data_tidied, na.rm = TRUE)
anova(model_subjects)
Anova Table (Type 3 tests)
Response: RT
\begin{tabular}{lrrrrrrrr} 
& num & Df & den & Df & MSE & F & ges & Pr \((>F)\) \\
Context & 1 & 59 & 90195 & 3.1767 & 0.0060231 & 0.07984 &. \\
Sentence & 1 & 59 & 124547 & 0.6283 & 0.0016524 & 0.43114 & \\
Context: Sentence & 1 & 59 & 93889 & 4.5967 & 0.0090449 & 0.03616 *
\end{tabular}
Signif. codes: 0 `***' 0.001 `**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


## Modelling our Data - F2

```
model_items <- aov_4(RT ~ Context * Sentence + (1 + Context * Sentence |
Item), data = factorial_data_tidied, na.rm = TRUE)
anova(model_items)
Anova Table (Type 3 tests)
Response: RT
\begin{tabular}{lrrrrrrrr} 
& num & Df & den & Df & MSE & F & ges & \(\operatorname{Pr}(>F)\) \\
Context & 1 & 27 & 39844 & 4.0013 & 0.0080150 & 0.05561
\end{tabular}.
Signif. codes: 0 `***' 0.001 `**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


## Interpreting our Model



## Interpreting our Model

We conducted a 2 (Context: Positive vs. Negative) x 2 (Sentence: Positive vs. Negative) repeated measures ANOVA to investigate the influence of Context valence on reaction times to Sentences of Positive or Negative valence. The ANOVA revealed no effect of Sentence ( $\mathrm{F}<1$ ), no effect of Context $\left(F(1,59)=3.18, p=.080, \eta \mathrm{G}^{2}=.006\right)$, but an interaction between Sentence and Context ( $\left.F(1,59)=4.60, p=.036, \eta G^{2}=.009\right)$.

The interaction was interpreted by conducting Bonferroni-corrected pairwise companions. These comparisons revealed that the interaction was driven by Negative Sentences being processed faster in Negative vs. Positive Contexts ( $1,474 \mathrm{~ms}$. vs. $1,628 \mathrm{~ms} ., \mathrm{t}(118)=2.78, p=.012$ ) while Positive Sentences were read at similar speeds in Negative vs. Positive Contexts ( $1,595 \mathrm{~ms}$. vs. $1,579 \mathrm{~ms} ., \mathrm{t}(118)=.284, p=1)$.

## Reporting ANOVA

- Say what type of ANOVA it was, say what factors you had (and with labels for each level).
- Report the results of main effects first, then interactions.
- Report F values, exact $p$-values, effect sizes, and confidence intervals.
- Remember to interpret interactions further - such as with contrasts or pairwise comparisons.
- When you have main effects, say which direction the effect goes.
- Avoid sillies - e.g., mixing up < and > or saying p=. 000

