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Previously

We examined using the afex package for 1-way ANOVA for between subjects 
and within subjects (repeated measures) designs.

We used the emmeans package for running follow-up tests and discussed issues 
around the need to correct for multiple comparisons (familywise error).

We examined how to build models for factorial ANOVA and how to interpret 
interaction effects using emmeans.



Analysis of Covariance (ANCOVA)

ANCOVA can be thought of as a mix of ANOVA and regression (both of which are the GLM 
at their core).

One of our examples from the previous workshop looked at how double espresso vs. single 
espresso vs. water drinking (our IV) might influence motor performance (our DV).

Imagine we sampled from a new group of participants - and we think another factor that we 
are not manipulating (time spent playing computer games) might also influence the DV.

What we want is to be able to see the effect on our DV of our IV after we have removed the 
influence of computer game playing frequency.



Analysis of Covariance (ANCOVA)

Now, imagine we have a measure of computer games frequency - perhaps hours per 
week people play computer games.

So, in addition to manipulating the type of beverage we’re giving people (i.e., double 
espresso vs. single espresso vs. water) we also measure how often they play 
computer games.

Let’s do a plot first with our DV (Motor Ability) on the y-axis, and our covariate (Gaming 
Frequency) on the x-axis.



So we can see there’s a relationship between our DV (Motor Ability) and our 
covariate (Gaming Frequency).

We can also see our Gaming Ability groups appear to be clustering in our data by 
Condition.



Let’s run a 1-way between participants ANOVA and initially ignore the covariate.

anova_model <-aov_4(Ability ~ Condition + (1 | Participant), data = my_data)
anova(anova_model)

Anova Table (Type 3 tests)

Response: Ability
          num Df den Df    MSE      F     ges    Pr(>F)    
Condition      2     42 1.2422 53.432 0.71786 2.882e-12 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The factor Condition is significant with an F = 53.432. We might then follow this up 
with some pairwise comparisons.



> emmeans(anova_model, pairwise ~ Condition)
$emmeans
 Condition       emmean    SE df lower.CL upper.CL
 Double Espresso   9.02 0.288 42     8.43     9.60
 Single Espresso   6.69 0.288 42     6.11     7.27
 Water             4.82 0.288 42     4.24     5.40

Confidence level used: 0.95 

$contrasts
 contrast                          estimate    SE df t.ratio p.value
 Double Espresso - Single Espresso     2.33 0.407 42  5.720  <.0001 
 Double Espresso - Water               4.20 0.407 42 10.317  <.0001 
 Single Espresso - Water               1.87 0.407 42  4.597  0.0001 

P value adjustment: tukey method for comparing a family of 3 estimates

We might then conclude we have a significant effect of Condition, and that each group 
differs from each other condition with the Double Espresso group scoring highest on 
the task, then the Single Espresso group, and then the Water group scoring lowest.



But now let’s control for the effect of our co-variate.

model_ancova <- aov_4(Ability ~ Gaming + Condition + (1 | Participant), data = my_data, 
factorize = FALSE)
anova(model_ancova)

Anova Table (Type 3 tests)

Response: Ability
          num Df den Df     MSE       F     ges   Pr(>F)    
Gaming         1     41 0.55171 53.5636 0.56643 5.87e-09 ***
Condition      2     41 0.55171  0.8771 0.04103   0.4236    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The factor Condition is now not significant with an F < 1.  However, our covariate 
Gaming Frequency is significant. Adding the covariate to our model means a lot of the 
variance we previously attributed to our experimental factor is actually explained by 
the covariate.



Adjusted Means

The mean for each group of our experimental factor (Condition) is adjusted to take into consideration the 
influence of our covariate within that group.

> emmeans(model_ancova, pairwise ~ Condition)
$emmeans
 Condition       emmean    SE df lower.CL upper.CL
 Double Espresso   6.32 0.415 41     5.48     7.16
 Single Espresso   6.87 0.193 41     6.48     7.26
 Water             7.33 0.393 41     6.53     8.12

These adjusted means contrast with the unadjusted ones which are:

  Condition       Mean
1 Double Espresso        9.02
2 Single Espresso        6.69
3 Water                  4.82



Base R aov() vs. afex::aov_4()

Note, if we had used the aov() function the F-tests would have been conducted using Type 1 (sequential) 
Sums of Squares.  For Type III, we need to use the aov_4() function from the afex package.

Type I Sum of Squares is calculated sequentially - e.g., first for Factor A main effect, then for Factor B main 
effect, then for the interaction.  The order in which they are calculated matters and can be misleading for 
unbalanced design or cases where predictors are correlated. Total SS is the sum of the individual effect SS.

Type II Sum of Squares assumes no interaction(s) when testing main effects or higher order interaction(s) 
when testing lower order interaction(s).

Type III Sum of Squares tests for effects adjusted for the presence of the other effects (so does not depend 
on the order of terms).

Much debate about which one is ‘correct’ - each has their own purpose - for factorial designs where you’re 
interested in testing an interaction (or when your predictors correlate), Type III is most commonly used.



AN(C)OVA as a special case of regression

Let’s return to the example we 
looked at for ANCOVA - and 
let’s forget the co-variate for a 
moment.

We looked at how double 
espresso vs. single espresso 
vs. water drinking (our IV) 
might influence people’s 
gaming ability (our DV).



AN(C)OVA as a special case of regression

First we use dummy (treatment) coding for the levels of our experimental factor.

my_data <- my_data %>%
  mutate(Condition = fct_relevel(Condition, 
                    levels = c("Water", "Double Espresso", "Single Espresso")))

contrasts(my_data$Condition)
                Double Espresso Single Espresso
Water                         0               0
Double Espresso               1               0
Single Espresso               0               1

Ability = Intercept + β1(Double Espresso) + β2(Single Espresso)

The Intercept is our reference category (Water) with coding (0, 0), while the coding for Double 
Espresso is (1, 0) and for Single Espresso (0, 1)



AN(C)OVA as a special case of regression

Ability = Intercept + β1(Double Espresso) + β2(Single Espresso)

We want to calculate β1 and β2.

model_lm <- lm(Ability ~ Condition, data = my_data)
model_lm

Call:
lm(formula = Ability ~ Condition, data = my_data)

Coefficients:
             (Intercept)  ConditionDouble Espresso  ConditionSingle Espresso  
                   4.817                     4.199                     1.871 

The intercept is 4.817 (which is the mean of our Water group), β1 is 4.199, and β2 is 1.871 



AN(C)OVA as a special case of regression

To work out the mean Ability of our Double Espresso Group, we use the coding for the Double Espresso 
group (1, 0) with our equation: 

Ability = Intercept + β1(Double Espresso) + β2(Single Espresso)

Ability = 4.817 + 4.199(1) + 1.871(0)
Ability = 4.817 + 4.199
Ability = 9.016

To work out the mean Ability of our Single Espresso Group, we use the coding for the Single Espresso 
group (0, 1) with our equation: 

Ability = 4.817 + 4.199(0) + 1.871(1)
Ability = 4.817 + 1.871
Ability = 6.688



AN(C)OVA as a special case of regression

Which are the exact same means generated by the ANOVA…



AN(C)OVA as a special case of regression

We can do ANCOVA like this too - let’s consider our co-variate of Gaming frequency…

The adjusted means from the ANCOVA (which take into consideration the influence of 
the covariate) were:

Water Group = 7.33
Double Espresso Group = 6.32
Single Espresso Group = 6.87



AN(C)OVA as a special case of regression

Ability = Intercept + β1(Gaming) + β2(Double Espresso) + β3(Single Espresso)

Add the covariate to our model before the experimental factor:

model_ancova <- lm(Ability ~ Gaming + Condition, data = my_data)
model_ancova

Call:
lm(formula = Ability ~ Gaming + Condition, data = my_data)

Coefficients:
             (Intercept)          Gaming  ConditionDouble Espresso  ConditionSingle Espresso
                 -3.4498          0.8538          -1.0085   -0.4563 



AN(C)OVA as a special case of regression

The β2 and β3 coefficients tell us the difference between each group mean (i.e., the 
adjusted mean) compared to the reference Group (Water) when taking into account 
the covariate of Gaming frequency:

β2 is the difference between the Double Espresso and Water group adjusted means (= 
-1.0085) while β3 is the difference between the Single Espresso and Water group 
adjusted means (= -0.4563)



AN(C)OVA as a special case of regression

Let’s check - the following are the adjusted means output by the ANCOVA model:

Water Group = 7.33
Double Espresso Group = 6.32
Single Espresso Group = 6.87

Difference between the Water and Double Espresso Group is 1.01 and the difference 
between the Water and Single Espresso Group is 0.46.



AN(C)OVA as a special case of regression

We can work out the mean of our reference group (Water) by plugging in the values to 
our equation - note that Gaming is not a factor and we need to enter the mean of this 
variable (which is 12.62296).  

Ability = Intercept + β1(Gaming) + β2(Double Espresso) + β3(Single Espresso)
Ability = -3.4498 + 0.8538(12.62296) + (- 1.0085)(0) + (-0.4563)(0)
Ability = -3.4498 + 10.777
Ability = 7.33

7.33 is the adjusted mean for the Water group…which is what we had from calling the 
emmeans() function following the ANCOVA…



AN(C)OVA as a special case of regression

You can now build ANOVA models in R for different kinds of designs, add 
between participant covariates, factor out the influence of these covariates, 
and you also know why AN(C)OVA is a special case of regression (with 
dummy coding of variables).

Actually, many statistical models can be built as a variation of the linear 
model!



https://lindeloev.github.io/tests-as-linear/#1_the_simplicity_underlying_common_tests

A great overview by 
Jonas Kristoffer 
Lindeløv.

https://lindeloev.github.io/tests-as-linear/#1_the_simplicity_underlying_common_tests

