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Understanding Statistics

e Imagine atest in which 95% of people without a medical
condition will be correctly diagnosed as not having it
(specificity = 0.95).

e Imagine the test is able to correctly diagnose 4 out of the 5
people who do have the medical condition (sensitivity = 0.8).

e Imagine the prevalence of the medical condition in the
population is 1%.

Colguhoun, D. (2014). An investigation of the false discovery rate and the misinterpretation of p-values. DOI:
10.1098/rs0s.140216
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The results of the test suggest 575 people have the condition. But 495 of these are false positives. So 86% of
the people who produced a positive result actually don't have the condition.



Traditional NHST basics...

e For a design with two experimental groups:
o Null hypothesis (HO) - there is no statistically significant
difference between those experimental groups.
o Experimental hypothesis (H1) - there is a statistically
significant difference between two experimental groups.

e We typically reject HO that if we find that the result of a
statistical test comparing the two experimental groups is p <
0.05 (this is the typical alpha (a) level researchers choose).



What is statistical significance?

Suppose that a treatment and a placebo are allocated at random to a group of
people. We measure the mean response to each treatment, and wish to know
whether or not the observed difference between the means is real (not zero),
or whether it could plausibly have arisen by chance. If the result of a
significance test is p = 0.05, we can make the following statement:

If there were actually no effect (if the true difference between means were zero)
then the probability of observing a value for the difference equal to, or greater
than, that actually observed would be p = 0.05. In other words there is a 5%
chance of seeing a difference at least as big as we have done, by chance alone.



Many scientists would not be able to correctly

define what is meant by a p-value...worrying!

In 2016 the American Statistical Association had to publish a paper reminding
researchers what can be concluded from p-values and what cannot...

THE AMERICAN STATISTICIAN
20%, VOL 70, NO. 2,129-133
htpJ//dx.doiorg/10.1080/000313052016. 1154108

Taylor & Francis

Tayhoe & Francis Geoup

EDITORIAL

The ASA’s Statement on p-Values: Context, Process, and Purpose

In February 2014, George Cobb, Professor Emeritus of Math-
ematics and Statistics at Mount Holyoke College, posed these
questions to an ASA discussion forum:

Q: Why do so many colleges and grad schools teach p = 0,057
A: Because that's still what the scientific community and journal
editors use.

0.057

J: Why do so many people still use p =
A: Because that's what they were taught in college or grad school.

Cobb’s concern was a long-worrisome circularity in the soci-
ology of science based on the use of bright lines suchas p < 0.05:
“We teach it because it's what we do; we do it because it’s what

we teach” This concern was brought to the attention of the ASA
Board.

The ASA Board was also stimulated by highly visible dis-
cussions over the last few years. For example, ScienceNews
( The ‘scien-

gfried 2010) wrote: “It’s science’s dirtiest secret:

cnthad aloscaslunk

2014) and a statement on risk-limiting post-election audits
(American Statistical Association 2010). However, these were
truly policy-related statements, The VAM statement addressed
a key educational policy issue, acknowledging the complexity of
the issues involved, citing limitations of VAMs as effective per-
formance models, and urging that they be developed and inter-
preted with the involvement of statisticians. The statement on
election auditing was also in response to a major but specific
policy issue (close elections in 2008), and said that statistically
based election audits should become a routine part of election
processes.

By contrast, the Board envisioned that the ASA statement
on p-values and statistical significance would shed light on an
aspect of our field that is too often misunderstood and misused
in the broader research community, and, in the process, pro-
vides the community a service. The intended audience would be
researchers. practitioners. and science writers who are not ori-



ASA Principles on p-values

1. p-values can indicate how incompatible the data are with a specified statistical model.

2. p-values do not measure the probability that the studied hypothesis is true, or the probability that the data
were produced by random chance alone.

3. Scientific conclusions and business or policy decisions should not be based only on whether a p-value
passes a specific threshold.

4. Proper inference requires full reporting and transparency.
5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.

6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

Ronald L. Wasserstein & Nicole A. Lazar (2016) The ASA's Statement on p-Values: Context, Process, and Purpose, The American
Statistician, 70:2, 129-133, DOI: 10.1080/00031305.2016.1154108



Type I and Type II Errors

e With an a-level of 0.05, we have a 5% chance of falsely rejecting
the null hypothesis (HO).

e Falsely rejecting HO is known as a Type | error (i.e., thinking we
have found a difference when these isn’t one).

e There are also Type Il errors which involve failing to find a
difference when one is actually present.

e Most of what you have been taught previously will probably have
involved trying to avoid Type | errors.
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Type I and Type II Errors

e Controlling for Type Il errors is as important as controlling for
Type | errors. The probability of a Type Il error is known as
Beta (B).

e The probability of arriving at a Type Il error (not finding a
difference where there is one) is related to the experimental
power of your design.

e For any experiment, Power=1-3



Is Power That Big a Deal?

Cohen (1992) describes why power is such a big deal (and what can happen
if experiments do not have sufficient power). Low powered studies have a
lowered chance of finding a real effect, and along with QRPs also a higher
chance of suggesting an effect is present when it is not.

Reports the results of a review of 1960 volume of Journal of Abnormal and
Social Psychology that he conducted at the time and the results of a
SedIimeier and Gigerenzer (1989) review of a 1984 volume of of the same
journal.

In 1960, the average power of the experiments reported in JASP to detect
medium effect sizes was 0.48. In 1984, it was 0.25 (in other words only a
25% chance of finding an effect even if it was there!)



Is Power That Big a Deal?

e Button et al. (2013), Nature Reviews Neuroscience, small sample size
undermines the reliability of neuroscience. Nord et al., (2017), Journal of
Neuroscience, highlight wide heterogeneity in power in neuroscience

studies.
Table 2. Median, maximum, and minimum power subdivided by study type
Median Minimum Maximum 2.5™ and 97.5" percentile 95% HDI

Group power (%) power (%) power (%) (based on raw data) {based on GMMs) Total N
All studies 23 0.05 1 0.05-1.00 0.00-0.72,0.80-1.00 730
All studies excluding null 30 0.05 1 0.05-1.00 0.01-0.73,0.79-1.00 638
Genetic n 0.05 1 0.05-0.94 0.00-0.44,0.63-0.93 234
Treatment 20 0.05 1 0.05-1.00 0.00-0.65,0.91-1.00 145
Psychology 50 0.07 1 0.07-1.00 0.02-0.24,0.28-1.00 198
Imaging 32 0.1 1 0.11-1.00 0.03-0.54,0.71-1.00 65
Neurochemistry 47 0.07 1 0.07-1.00 0.02-0.79,0.92-1.00 50
Miscellaneous 57 0.1 1 0.11-1.00 0.09-1.00 38




Power (1-B) is related to:
o sample size (i.e., N)
o effect size

o a
Cohen (1992) proposes that a reasonable level of Power to aim for should be
around 0.8

Power of 0.8 (with a B of 0.20), alongside an a of 0.05 results in a B:a ratio of 4:1
in terms of the risk associated with respective errors.

Small Effect Medium Effect Large Effect
Cohen’s d 0.2 0.5 0.8

Pearson’s r 0.1 0.3 0.5



Equivalence Testing

Equivalence Testing for Psychological Research: A Tutorial
Daniél Lakens'2), Anne M. Scheel'), Peder M. Isager!:

First Published June 1, 2018 | Research Article | ) Check for updates
https://doi.org/10.1177/2515245918770963

Article information \Atetric 423 | (=3 @ G

Abstract
Psychologists must be able to test both for the presence of an effect and for the absence of an effect. In
addition to testing against zero, researchers can use the two one-sided tests (TOST) procedure to test for
equivalence and reject the presence of a smallest effect size of interest (SESOI). The TOST procedure can
be used to determine if an observed effect is surprisingly small, given that a true effect at least as extreme as
the SESOI exists. We explain a range of approaches to determine the SESOI in psychological science and
provide detailed examples of how equivalence tests should be performed and reported. Equivalence tests
are an important extension of the statistical tools psychologists currently use and enable researchers to
falsify predictions about the presence, and declare the absence, of meaningful effects.

https://journals.sagepub.com/doi/full/10.1177/2515245918770963



https://journals.sagepub.com/doi/full/10.1177/2515245918770963

Data Simulation

faux m 4 Reference  Articles ~  Changelog

faux

It is useful to be able to simulate data with a specified structure. The faux package provides some functions to
make this process easier. See the vignettes for more detalils.

Installation

You can install the development version of faux from GitHub with:

devtools::install_github("debruine/faux")



Data Simulation

g;:‘;';'g"y and Evolution Volume 7, Issue 4
April 2016
Pages 493-498

Methods in Ecology and Evolution B eusses
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SIMR: an R package for power analysis of generalized linear
mixed models by simulation

Peter Greeny, Catriona ). MacLeod
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Data Simulation - When No Real Effect Exists
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Real Effects Will NOT Always Replicate
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Assuming p < .05 alpha,
N=50 gives us around 30%
power, which means that
70% of the time we'll miss
the effect (even though it is
present).



Real Effects Will NOT Always Replicate
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The Problem of Sampling Bias

Sample size: 20 Sample size: 500
Samples for conditions e number | el number |
“Simple” and “Complex”
are drawn from the same
population. Due to /\
sampling error, with
small samples (e.g., e T e -
N=20) we might
conclude there could be
a difference between A
and B where there isn't

one (as you can see with " — S A 11
the N=500 samples).
Enter QRPs...
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Summary

e Power is important - underpowered experiments are a waste of time (often yours!),
money, and resources such as lab space etc.

e Underpowered experiments combined with questionable research practices (QRPs)
and publication bias results in a literature that is full of research articles that are
wrong.

e The scientific theories/models you're testing need to allow you to determine what the
minimal effect size of interest is - and it is this minimal effect size that you need to
power your experiment to find.

e Evenin a high powered study (e.g., 80%) sometimes you will fail to find an effect even
though it is present - and with NHST just because you might have an absence of
evidence for an effect, this is not the same as having evidence of the effect not being
there. When our test is non-significant, we cannot conclude an effect is not there -
just that we don't have the support to conclude that it is there.



