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In this workshop...

● We will take our first look at (generalised) linear mixed models - 
(G)LMMs.

● (G)LMMs allow for models with a combination of fixed and random 
effects (intercepts and slopes).

● We’ll focus on designs with one factor of several levels, and 2 x 2 
designs for continuous data.

● We’ll also examine of measures of model fit, and using emmeans() 
to interpret interactions in factorial designs.



Why linear mixed models?

(G)LMMs are more flexible than ANOVA, allow for multiple 
simultaneous random effects (e.g., subjects and items), subject and 
item covariates, nesting, unbalanced designs, cope with missing 
data, allow you to model both continuous and categorical IVs and 
DVs, operate over trial-level data, provide a good balance of Type I 
and Type II error, and allow you to determine the best statistical 
models to fit to your data that make the most theoretical sense...



Recap - linear modelling

Here we have a measure of height 
for 4 males and 4 females. Can 
gender be used to predict height?

> gender_height_data
# A tibble: 8 x 3
  subject gender height

<int> <fct>   <dbl>
1   1 male  170
2   2 male  180
3   3 male  175
4   4 male  185
5   5 female 160
6   6 female 170
7   7 female 165
8   8 female 165



It certainly looks like Males (on average) are taller than Females (on average).

Let’s fit a linear model using the lm() function.

height_model <- lm(height ~ gender, data = gender_height_data)



> summary(height_model)

Call:
lm(formula = height ~ gender, data = 
gender_height_data)

Residuals:
   Min 1Q Median 3Q Max
-7.500 -3.125  0.000  3.125  7.500

Coefficients:
        Estimate Std. Error t value Pr(>|t|)    
(Intercept)  165.000  2.700  61.104 1.29e-09 ***
gendermale 12.500  3.819   3.273 0.017 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
0.1 ‘ ’ 1

Residual standard error: 5.401 on 6 degrees of freedom
Multiple R-squared:  0.641,    Adjusted R-squared:  
0.5812
F-statistic: 10.71 on 1 and 6 DF,  p-value: 0.01696

We can see here that 
Gender is a significant 
predictor (p = 0.017)



> summary(height_model)

Call:
lm(formula = height ~ gender, data = 
gender_height_data)

Residuals:
   Min 1Q Median 3Q Max
-7.500 -3.125  0.000  3.125  7.500

Coefficients:
        Estimate Std. Error t value Pr(>|t|)    
(Intercept)  165.000  2.700  61.104 1.29e-09 ***
gendermale 12.500  3.819   3.273 0.017 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
0.1 ‘ ’ 1

Residual standard error: 5.401 on 6 degrees of freedom
Multiple R-squared:  0.641,    Adjusted R-squared:  
0.5812
F-statistic: 10.71 on 1 and 6 DF,  p-value: 0.01696

The Intercept (165) 
corresponds to the mean 
height of our reference 
category (Female).

The gendermale 
coefficient  (12.5) is the 
difference between our 
reference category 
(Intercept) and our Males.

Females were taken as the 
reference category (i.e., 
the intercept) simply 
because R chooses this 
on an alphabetical basis.





How about with a non-categorical predictor?

Here we have age and height data - can age predict someone’s height in our dataset?

> age_height_data
# A tibble: 8 x 3
  subject   age height

<int> <dbl>  <dbl>
1   1 22 170
2   2 21 180
3   3 19 175
4   4 23 185
5   5 15 160
6   6 17 170
7   7 16 165
8   8 17 165



Let’s build a model...

> age_model <- lm(height ~ age, data = age_height_data)
> summary(age_model)

Call:
lm(formula = height ~ age, data = age_height_data)

Residuals:
   Min 1Q Median 3Q Max
-9.045 -2.104  1.646  3.201  3.557

Coefficients:
        Estimate Std. Error t value Pr(>|t|)    
(Intercept)  126.281 11.411  11.067 3.24e-05 ***
age        2.398  0.602   3.984  0.00725 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.721 on 6 degrees of freedom
Multiple R-squared:  0.7257,    Adjusted R-squared:  0.6799
F-statistic: 15.87 on 1 and 6 DF,  p-value: 0.007252

For every increase in Age 
by 1, Height increases by 
2.398. But of course, we 
know this relationship 
likely breaks down at a 
certain age - but for the 
data we have, we can fit a 
linear function.



Linear Mixed Models in R

For mixed effects linear modelling in R, we need to install the package {lme4}. We also 
want the {lmerTest} package and the {emmeans} package.

> library(lme4) 
> library(lmerTest) 
> library(emmeans)

The {lme4} package is for model building, the {lmerTest} package is for p-value 
estimates of our model parameters, and the {emmeans} package will allow us to run 
follow-up tests on our models. 



Linear mixed models

● What happens when we have many observations per person that we want to 
model?

● Imagine we are interested in how a person’s reaction time varies whether 
they’re responding to Large or Small target items.

● We observe the same 10 people each responding to 5 Large and 5 Small 
target items. 

● We have 10 observations per person. These observations are not 
independent of each other as (which is an assumption of a linear model).



Linear mixed models

We can get around the lack of independence by treating participants as a random 
effect such that each participant has their own individual reaction time baseline.

This gives us a separate random intercept value for each participant - in other 
words, our model can account for individual variation. 

This is a mixed effects model:

rt ~ condition + (1 | subject) + error

This is our random effect term and models each subject 
having a different random intercept.



Linear mixed models

Imagine also that we have different Target Items (e.g., 10 
different items that were presented in either in Large or Small 
format). 

Each Target Item might have been a little different. One 
particular Target might just be responded to more quickly 
(regardless of what condition it was in) - in other words, the 
Target Items will also have different baselines.



Linear mixed models

We can capture the random effect of Item in the same way that 
we did for participants:

rt ~ condition + (1 | subject) + (1 | item) + error

We now have two random effects and are modelling 
each Subject and each Item having their own 
individual intercept.



Fixed vs. Random Effects

Fixed Effect 
Data has been gathered from all the levels of the factor that are of 
interest. (Typically your experimental factors and maybe factors like 
age group - young vs. old for example).

Random Effect 
The factor has many possible levels, interest is in all possible levels, 
but only a random sample of levels is included in the data. (Typically 
participants and items). Typically need > 5 levels in order to estimate 
effects.



Linear mixed models

> mixed_model_data
# A tibble: 400 x 4
   subject item  condition rt
   <fct>   <fct> <fct> <int>
 1 1   1 small   908
 2 1   2 small   884
 3 1   3 small   849
 4 1   4 small   722
 5 1   5 small  1090
 6 2   1 small   890
 7 2   2 small   703
 8 2   3 small   781
 9 2   4 small   942
10 2   5 small   898
# … with 390 more rows

mixed_model_data %>%
  group_by(condition) %>%
  summarise(mean_rt = mean(rt), sd_rt 
= sd(rt))

# A tibble: 2 x 3
  condition mean_rt sd_rt
  <fct>   <dbl> <dbl>
1 large    854.  87.8
2 small    804.  97.5



mixed_model <- lmer(rt ~ condition + (1 | subject) + (1 | item),
                data = mixed_model_data)
summary(mixed_model)

Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: rt ~ condition + (1 | subject) + (1 | item)
   Data: mixed_model_data

REML criterion at convergence: 4696.8

Scaled residuals:
Min  1Q  Median  3Q Max

-2.5385 -0.6366 -0.1475  0.6054  2.6043

Random effects:
 Groups   Name    Variance Std.Dev.
 subject  (Intercept) 1240.3   35.22   
 item (Intercept)  442.8   21.04   
 Residual         7126.7   84.42   
Number of obs: 400, groups:  subject, 10; item, 5

Fixed effects:
           Estimate Std. Error  df t value Pr(>|t|)    
(Intercept) 854.140 15.755  12.166  54.213 6.99e-16 ***
conditionsmall  -49.780  8.442  385.000  -5.897 8.12e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
        (Intr)
conditnsmll -0.268

More variability in subjects 
than in items.

The intercept corresponds to 
the RT to the Large Condition 
(854 ms) - going from Large to 
Small contexts decreases RT 
by around 50 ms.



Fixed effects:
           Estimate Std. Error  df t value Pr(>|t|)    
(Intercept) 854.140 15.755  12.166  54.213 6.99e-16 ***
conditionsmall  -49.780  8.442  385.000  -5.897 8.12e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can see that the experimental condition is significant as we see the p-value 
associated with the t-test on the parameter is significant (p <.001).

We can also compare this model with our fixed effect of condition with a model 
which doesn’t have this fixed effect. If the difference between the two models is 
significant, then we can conclude that the fixed effect is significant.

mixed_model_null <- lmer(rt ~ (1 | subject) + (1 | item),
                     data = mixed_model_data)



Comparing Models Using LRT

We can use the Likelihood Ratio Test (LRT) to compare our model with the fixed effect of Condition to the 
model without.

anova(mixed_model, mixed_model_null)

Data: mixed_model_data
Models:
mixed_model_null: rt ~ (1 | subject) + (1 | item)
mixed_model: rt ~ condition + (1 | subject) + (1 | item)
             nparAIC BIC  logLik deviance  Chisq Df Pr(>Chisq)    
mixed_model_null 4 4751.5 4767.5 -2371.8   4743.5                     
mixed_model     5 4720.1 4740.1 -2355.1   4710.1 33.368  1  7.626e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Data: mixed_model_data
Models:
mixed_model_null: rt ~ (1 | subject) + (1 | item)
mixed_model: rt ~ condition + (1 | subject) + (1 | item)
             nparAIC BIC  logLik deviance  Chisq Df Pr(>Chisq)    
mixed_model_null 4 4751.5 4767.5 -2371.8   4743.5                     
mixed_model     5 4720.1 4740.1 -2355.1   4710.1 33.368  1  7.626e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We see the Likelihood Ratio Test is significant - note the AIC, BIC, and 
deviance values are all lower for the model with our fixed effect. Deviance is 
the same as the residual sum of squares in linear models.

LRTs should only be conducted with nested models - i.e., when one model is 
a subset of the other.



Modelling differences in the magnitude of our 
effect

So far we have accounted for the possibility that our subjects and 
items might have different reaction time baselines - that some 
people are faster at responding that others (which is why we 
introduced the separate random intercepts). 

But what if the magnitude of the effect of Condition is different for 
different subjects, and also what if the magnitude of the effect of 
Condition is different for different items?



So far we are assuming constant magnitudes of 
the effect across subjects and items

coef(mixed_model)
$subject
   (Intercept) conditionsmall
1 896.2420     -49.78
2 872.6334     -49.78
3 858.2934     -49.78
4 901.0512     -49.78
5 874.9943     -49.78
6 839.7562     -49.78
7 842.9915     -49.78
8 801.1955     -49.78
9 841.2427     -49.78
10 812.9998     -49.78

$item
  (Intercept) conditionsmall
1 868.8340     -49.78
2 833.9098     -49.78
3 852.9328     -49.78
4 837.1982     -49.78
5 877.8252     -49.78

The different intercepts for each subjects and 
for each item take into account individual 
baseline differences. 

However, this doesn’t take into account the 
fact our effect might be bigger for some 
subjects than for others (and for some items 
than for others). In other words, the slopes are 
all currently the same (-49.78).



Let’s model the variability in the magnitude of 
the effect

mixed_model_slopes <- lmer(rt ~ condition + 
(1 + condition | subject) + 
(1 + condition | item), 
data = mixed_model_data)

These modified terms tell the model to expect different intercepts for 
condition (which we had before) as well as differing slopes as a function of 
the factor condition. Remember, these are our random effects.



Now let’s look at the coefficients in our model

coef(mixed_model_slopes)
$subject
   (Intercept) conditionsmall
1 881.8123  -11.07787
2 866.2407  -32.46840
3 858.8051  -57.03899
4 888.3678  -26.08780
5 869.7440  -41.46898
6 843.8967  -58.48443
7 847.1946  -62.21594
8 814.3650  -69.96477
9 846.9626  -69.07433
10 824.0112  -69.91850

$item
  (Intercept) conditionsmall
1 868.9277  -51.97957
2 838.7420  -59.38390
3 844.5847  -28.36271
4 846.8623  -72.12582
5 871.5834  -37.04801

The slopes between the two levels of 
our condition differ for each subject...

...and also for each item.



Plotting the individual intercepts and slopes for 
subjects

Let's just look at subjects 1 and 3 - for subject 1 
we can see the difference between conditions 
looks pretty small compared to the difference for 
subject 3.



Plotting the individual intercepts and slopes for 
items

Let's just look at items 1 and 3 - for these items, 
the reaction times for the `small` condition are 
pretty much the same - but for the `large` 
condition item 1 is about 25 ms. slower than for 
item 3.



Partial Pooling in LMMs

LMMs use partial pooling to estimate the parameters of the model coefficients.

Partial pooling takes account of the individual slopes and intercepts for each level of the 
random effect structure, but also the slope and intercept of the overall model (which 
ignores how things vary from one participant to the next).

The use of partial pooling is one reason why LMMs are so powerful - they can cope with 
missing data (by being sensitive to properties of the overall dataset) and are not too 
affected by extreme data points (because they know these are quite unlikely in the context 
of the larger dataset - shrinkage reduces the influence of these extreme values on your 
parameter estimates).

Have a look at this great blogpost by Tristan Mahr: 
https://www.tjmahr.com/plotting-partial-pooling-in-mixed-effects-models/

https://www.tjmahr.com/plotting-partial-pooling-in-mixed-effects-models/




One Factor Design Example

Imagine we measured 24 subjects’ gaze duration while reading a sentence that appeared in one of three 
conditions - Negative, Neutral, and Positive. We had 24 items. The study is repeated measures (so everyone 
saw every condition).

head(tidied_factor_1_data)
# A tibble: 6 x 4
  subject item  condition  gaze
  <fct>   <fct> <fct> <dbl>
1 S1  I1 Neutral 867
2 S1  I2 Positive 1061
3 S1  I3 Negative 771
4 S1  I4 Neutral 626
5 S1  I5 Positive  1283
6 S1  I6 Negative 846



One Factor Design Example



Building our model - attempt 1

factor_1_model <- lmer(gaze ~ condition + (1 + condition | subject) +
                     (1 + condition | item), data = tidied_factor_1_data)

boundary (singular) fit: see ?isSingular

The warning we receive suggests we might be trying to estimate more 
parameters that can be estimated using the data set of the size we have. In other 
words, our model may be too complex. One solution would be to ignore the 
warning - especially if there is a strong theoretical reason to model all of the 
terms. Another solution would be to simplify the random effects structure until 
the warning goes away.



Building our model - attempt 2

factor_1_model <- lmer(gaze ~ condition + (1 | subject) + (1 | item),
                   data = tidied_factor_1_data)

If we drop both random slopes, we end up with a model that doesn’t generate the 
warning. We can then use the check_model() function from the {performance} 
package to check our model assumptions.

check_model(factor_1_model)



Checking our assumptions



Interpreting our model
summary(factor_1_model)
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: gaze ~ condition + (1 | subject) + (1 | item)
   Data: tidied_factor_1_data

REML criterion at convergence: 8713.1

Scaled residuals:
Min  1Q  Median  3Q Max

-2.4240 -0.6246 -0.1505  0.4069  7.5250

Random effects:
 Groups   Name    Variance Std.Dev.
 subject  (Intercept)  81340   285.2   
 item (Intercept)  29586   172.0   
 Residual         206838   454.8   
Number of obs: 574, groups:  subject, 24; item, 24

Fixed effects:
              Estimate Std. Error  df t value Pr(>|t|)    
(Intercept)    1083.90  75.53   45.12  14.350  < 2e-16 ***
conditionNeutral 100.84  46.55  525.13 2.166  0.03073 *  
conditionPositive   123.40  46.48  525.09 2.655  0.00818 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
        (Intr) cndtnN
conditnNtrl -0.308   
conditnPstv -0.309  0.501

These tests compare the 
Intercept to first the Neural 
condition, then to the 
Positive. 



LRT

So the summary on the previous slide tells us only part of the story. Let’s compare the model with the fixed 
effect of condition to a model without. 

factor_1_model_null <- lmer(gaze ~ (1 | subject) + (1 | item),
                        data = tidied_factor_1_data)

anova(factor_1_model, factor_1_model_null)

Data: tidied_factor_1_data
Models:
factor_1_model_null: gaze ~ (1 | subject) + (1 | item)
factor_1_model: gaze ~ condition + (1 | subject) + (1 | item)
                npar AIC BIC  logLik deviance  Chisq Df Pr(>Chisq)  
factor_1_model_null 4 8758.1 8775.6 -4375.1   8750.1                   
factor_1_model     6 8754.2 8780.3 -4371.1   8742.2  7.9515  2 0.01877 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The models differ - 
factor_1_model has lower 
deviance (lower residual 
sum of squares).



Which level(s) of our factor differ(s) from 
which other level(s)?

We’re going to use the emmeans() function from the {emmeans} package.

emmeans(factor_1_model, pairwise ~ condition)
$emmeans
 condition emmean   SE   df lower.CL upper.CL
 Negative 1084 75.5 45.1  932 1236
 Neutral 1185 75.5 45.1 1033 1337
 Positive 1207 75.5 45.0 1055 1359

Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95

$contrasts
 contrast        estimate   SE  df t.ratio p.value
 Negative - Neutral -100.8 46.5 525 -2.166  0.0780
 Negative - Positive   -123.4 46.5 525 -2.655  0.0222
 Neutral - Positive -22.6 46.5 525 -0.485  0.8783

Degrees-of-freedom method: kenward-roger
P value adjustment: tukey method for comparing a family of 3 estimates

Note, with Tukey corrected 
multiple comparisons only 
the Negative vs. Positive 
comparison is significant.



A few points to note...

Models can only be compared to each other using the LRT if they are nested - in other 
words, if one model is a subset of the other. Models with different fixed and random 
effects structures cannot be compared in this way - use AIC or BIC comparisons. 

AIC is the Akaike Information Criterion and measures how much ‘information’ is not 
captured by our model (values that are lower are better). 

Absolute AIC values cannot be interpreted - they have to be compared with the AIC 
value of another model. AIC penalises the addition of new parameters in a model - 
but not as much as BIC.


