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Recap (and overview of this session)

● Previously we looked at mixed models and examined how they were related to (but 
more flexible) than models built using the general linear model.

● We built mixed models for designs involving one factor, and looked at how we decide 
what kind of random effects structure to build.

● We also spent some time looking at how best to interpret the results of mixed 
models, and how to test whether the assumptions underlying our mixed models have 
been met.

● In this session we’re going to look at mixed models for factorial designs, generalised 
mixed models for where our outcome (dependent) variable is not continuous, and 
models for cases where our outcome variable is ordinal (e.g., as you might get from 
using a Likert scale).



LMMs for factorial designs

We have a 2 x 2 repeated measures design. The first factor is Context (Negative vs. Positive) and the second 
is Sentence Type (Negative vs. Positive). The DV is reading time duration to a Target Sentence (measured in 
ms.). We have 60 subjects, and 28 items.

head(tidied_factorial_data)
# A tibble: 6 x 5
  subject item RT context  sentence
  <fct>   <fct> <dbl>  <fct> <fct>   
1 1   3  1270 Negative Positive
2 1   7   739 Negative Positive
3 1   11  982 Negative Positive
4 1   15 1291 Negative Positive
5 1   19 1734 Negative Positive
6 1   23 1757 Negative Positive



str(tidied_factorial_data)
tibble [1,680 × 5] (S3: tbl_df/tbl/data.frame)
 $ subject : Factor w/ 60 levels "1","2","3","4",..: 1 1 1 1 1 1 1 2 2 2 ...
 $ item : Factor w/ 28 levels "1","2","3","4",..: 3 7 11 15 19 23 27 4 8 12 
...
 $ RT  : num [1:1680] 1270 739 982 1291 1734 ...
 $ context : Factor w/ 2 levels "Negative","Positive": 1 1 1 1 1 1 1 1 1 1 ...
 $ sentence: Factor w/ 2 levels "Negative","Positive": 2 2 2 2 2 2 2 2 2 2 …

tidied_factorial_data %>%
  group_by(context, sentence) %>%
  summarise(mean_rt = mean(RT), sd_rt = sd(RT))

# A tibble: 4 x 4
# Groups:   context [2]
  context  sentence mean_rt sd_rt
  <fct> <fct>  <dbl> <dbl>
1 Negative Negative   1474.  729.
2 Negative Positive NA NA
3 Positive Negative NA NA
4 Positive Positive   1579.  841.

So what’s going on 
here?



Using {visdat}

vis_dat(tidied_factorial_data)

vis_miss(tidied_factorial_data)



Let’s filter out missing data (NAs)

tidied_factorial_data %>%
  filter(!is.na(RT)) %>%
  group_by(context, sentence) %>%
  summarise(mean_rt = mean(RT), sd_rt = sd(RT))

# A tibble: 4 x 4
# Groups:   context [2]
  context  sentence mean_rt sd_rt
  <fct> <fct>  <dbl> <dbl>
1 Negative Negative   1474.  729.
2 Negative Positive   1595.  887.
3 Positive Negative   1633.  877.
4 Positive Positive   1579.  841.





Setting up our contrasts

By default, R uses dummy or treatment coding for the different experimental factors. 
Recall how we used this type of coding when we examined ANOVA as a special case of 
the linear model. However, for mixed models this default coding can make parameter 
estimates harder to understand (and can result in misinterpretation of main vs. simple 
effects). For factors with 2 levels, we can use sum/deviation coding - this means that the 
intercept for the overall model will be equal to the grand mean (i.e., the mean of all our 
conditions).

contrasts(tidied_factorial_data$context) <- matrix(c(.5, -.5))
contrasts(tidied_factorial_data$sentence) <- matrix(c(.5, -.5))



Building our model - attempt 1

factorial_model <- lmer(RT ~ context * sentence +
                      (1 + context * sentence | subject) +
                      (1 + context * sentence | item),
                    data = tidied_factorial_data)

This is a maximal model in which we try to model the most complex random 
effects structure we can. The fixed effect context * sentence corresponds 
to an effect of context, an effect of sentence, and the interaction between the 
two. It is a more succinct way of writing context + sentence + context : 
sentence. 



Building our model - attempt 2

Warning message:
In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
  Model failed to converge with max|grad| = 0.005999 (tol = 0.002, 
component 1)

Let’s simplify the random effects structure by dropping the interaction term for the subjects random 
effect.

factorial_model <- lmer(RT ~ context * sentence +
                      (1 + context + sentence | subject) +
                      (1 + context * sentence | item),
                    data = tidied_factorial_data)



Checking our assumptions



Interpreting the interaction

We can use the emmeans()  function to run pairwise comparisons in order to determine what is driving the 
interaction:
emmeans(factorial_model, pairwise ~ context*sentence, adjust = "none")
$emmeans
 context  sentence emmean   SE   df lower.CL upper.CL
 Negative Negative   1474 80.9 38.9 1310 1638
 Positive Negative   1627 99.0 43.9 1428 1827
 Negative Positive   1595 96.5 37.1 1399 1790
 Positive Positive   1579 90.2 48.4 1398 1761

Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95

$contrasts
 contrast                          estimate   SE   df   t.ratio p.value
 Negative Negative - Positive Negative   -153.1 51.7 28.4 -2.960  0.0061
 Negative Negative - Negative Positive   -120.6 90.3 29.1 -1.335  0.1922
 Negative Negative - Positive Positive   -105.2 92.0 29.0 -1.144  0.2621
 Positive Negative - Negative Positive 32.5 97.1 31.4  0.335  0.7399
 Positive Negative - Positive Positive 47.9 98.3 28.4  0.487  0.6301
 Negative Positive - Positive Positive 15.4 59.9 28.7  0.256  0.7996

Degrees-of-freedom method: kenward-roger

We can see the interaction is 
being driven by reading times to 
Negative sentences in Negative 
vs. Positive contexts. Let’s look 
again at the plot and 
descriptives...



  context  sentence mean_rt sd_rt
  <fct> <fct>  <dbl> <dbl>
1 Negative Negative   1474.  729.
2 Negative Positive   1595.  887.
3 Positive Negative   1633.  877.
4 Positive Positive   1579.  841.



Interpreting our model

summary(factorial_model)
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: RT ~ context * sentence + (1 + context + sentence | subject) +  

(1 + context * sentence | item)
   Data: tidied_factorial_data

REML criterion at convergence: 26628.6

Scaled residuals:
Min  1Q  Median  3Q Max

-2.3460 -0.5439 -0.1563  0.3202  7.1297

Random effects:
 Groups   Name           Variance Std.Dev. Corr         
 subject  (Intercept)    106850   326.88                
      context1        21848   147.81   -0.68        
      sentence1       28914   170.04   -0.08 -0.28  
 item (Intercept)    105902   325.43                
      context1         4919 70.14 0.27        
      sentence1      163485   404.33   -0.02 -0.11  
      context1:sentence1  56612   237.93   -0.71 -0.81 -0.21
 Residual                432879   657.94                
Number of obs: 1668, groups:  subject, 60; item, 28

Fixed effects:
               Estimate Std. Error  df t value Pr(>|t|)    
(Intercept)     1568.68  76.31   50.04  20.556   <2e-16 ***
context1         -68.87  39.77   31.62  -1.732   0.0931 .  
sentence1        -36.35  85.81   29.71  -0.424   0.6749    
context1:sentence1  -168.45  78.68   26.32  -2.141   0.0417 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
        (Intr) cntxt1 sntnc1
context1 -0.109          
sentence1   -0.025 -0.070   
cntxt1:snt1 -0.327 -0.147 -0.112

Our fixed effect 
parameter estimates. 
The interaction is 
significant (p = .0417)



Writing up the results

The analyses were carried out using the lme4 package (Bates, Maechler, Bolker, & Walker, 2015) to fit the linear 
mixed models for the reading time measure in R version 3.6.3 (R Development Core Team, 2020). Deviation 
coding was used for each of the two experimental factors (Barr et al., 2013). Pairwise comparisons conducted 
with the emmeans package (Lenth, 2018) were used to investigate the interaction for the reading time measure. 
Below we report regression coefficient estimates, standard errors, dfs, t-values, and p-values for the intercept 
and fixed effects.Degrees of freedom were approximated using the Kenward-Roger method. Restricted 
maximum likelihood estimation was used for the reporting of parameters. For pairwise comparisons we report 
the t-values and p-values. 

Estimate SE df t-value p-value

Intercept 1568.68 76.31   50.04 20.556 <2e-16

Context -68.87 39.77  31.62 -1.732   0.0931

Sentence -36.35 85.81  29.71 -0.424  0.6749

Context x Sentence -168.45 78.68 26.32 -2.141 0.0417



Writing up the results

When reporting the results of LMMs, it is important to provide all the information that 
someone would need to reproduce your analysis exactly. It’s important to provide 
versions for R and the packages you’re using so that exactly the same version of R 
and associated packages can be used by someone else. You can use 
sessionInfo() to generate a list of the packages (plus their version numbers) 
loaded in your R environment. 

We’re in a world where many journals now ask for your analysis code and data to be 
uploaded as supplementary material.

One of the best ways to ensure reproducibility is to use Binder - and link to your 
Binderised script in your journal submission.



Addressing convergence errors

If you receive convergence errors, it means your are likely trying to estimate too 
many parameters than your data will allow. You need to simplify the random 
effects structure until you are able to estimate the parameters you want to. One 
way to do this is to simplify the random effects terms that explain the least 
amount of variance - assessed using the summary() function. 

You could also systematically, one by one, drop interaction terms, then individual 
terms from your random effects structure until you are able to fit a model to your 
data.  But you want to avoid random effects with just random intercepts (i.e., no 
slopes) as that can inflate the Type 1 error rate (Barr et al., 2013).



A few other things...

You can add participant and item covariates as fixed effects, and you can 
have a variety of continuous and categorical variables in your LMM. LMMs 
are very flexible. 

You’ll find that sometimes several models fit your data - you can run 
likelihood comparison test on nested models to determine which is the 
best fit. If you have a selection where not one is statistically better than 
the others, choose the model that makes most theoretical sense.



Other distributions

Looking at the 2 x 2 factorial data again, we can plot the response variable on a Cullen and Frey graph using the 
{fitdistrplus} package and the descdist()  function. 

descdist(tidied_factorial_data$RT)



An Example of The Gamma Distribution



Maybe we should have built a model assuming 
sampling from the Gamma distribution?

Reaction time data very often follow the Gamma distribution (see Kliegl et al. 2010, Lo & 
Andrews, 2015, for discussion).

Gamma mixed models are often harder to fit and frequently require a simpler random 
effects structure. You can build them using the glmer() function and specify family = 
Gamma)

Kliegl, R., Masson, M. E. J., and Richter, E. M. (2010). A linear mixed model analysis of 
masked repetition priming. Visual Cognition,18, 655–681. 

Lo, S., and Andrews, S. (2015). To transform or not to transform: using generalized linear 
mixed models to analyse reaction time data. Frontiers in Psychology, 6:1171.



A few other things...

Sometimes you’ll find yourself trying to fit an over-parameterised model - this is one whether you 
are trying to estimate more components of the model than your data/design supports. 

In {lme4}, you’ll receive a “singular fit” error if your model appears over-parameterised - one 
solution is simplify the random effects structure (usually by removing random slopes) in a way 
that makes theoretical sense until you arrive at a model that fits (but doesn’t overfit) your data.

Having said that, if the random effects structure makes complete theoretical sense then you 
might not want to simplify it. Often it’s a judgement call.

Read more in “Parsimonious mixed models” by Bates et al.: https://arxiv.org/abs/1506.04967

https://arxiv.org/abs/1506.04967




What if your DV isn’t a continuous variable?

In this section and the next we’ll take a look at how you might build mixed models 
for variables that are binomial (e.g., zeros and ones) and ordinal (as might be found 
with Likert-scale data).

In eye movement work, in addition to reading time we also the number of times 
people re-read a region of text - these types of eye-movements are called 
“regressions”. For any one person reading a region of text, they either re-read it, or 
they don’t. Thus, the data are binomial/binary (not continuous). In our data sets 
containing a measure of eye-movement regressions, 1 corresponds to a region of 
text being re-read, 0 to it not being re-read. 



Binomial data

In an eye-movement study we measured readers’ regressions as they read sentences. We had 
sentences conveying three different types of meaning (Negative vs. Neutral vs. Positive). For 
each, we measured whether people did or did not make a regressive eye-movement. This is our 
DV and is coded as 0 or 1. We had 24 subjects and 24 items.

str(tidied_regressions_data)
tibble [553 × 4] (S3: tbl_df/tbl/data.frame)
 $ Subject  : Factor w/ 24 levels "S1","S10","S11",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ Item : Factor w/ 24 levels "I1","I10","I11",..: 12 18 19 20 21 22 23 24 2 3 ...
 $ Condition: Factor w/ 3 levels "Negative","Neutral",..: 3 1 2 3 1 2 3 1 2 3 ...
 $ DV   : num [1:553] 0 0 0 0 0 1 0 0 0 0 …



Binomial data

head(tidied_regressions_data)
# A tibble: 6 x 4
  Subject Item  Condition DV
  <fct>   <fct> <fct> <dbl>
1 S1  I2 Positive  0
2 S1  I3 Negative  0
3 S1  I4 Neutral   0
4 S1  I5 Positive  0
5 S1  I6 Negative  0
6 S1  I7 Neutral   1

tidied_regressions_data %>%
  group_by(Condition) %>%
  summarise(mean_DV = mean(DV), sd_DV = 
sd(DV))

# A tibble: 3 x 3
  Condition mean_DV sd_DV
  <fct>   <dbl> <dbl>
1 Negative 0.247 0.433
2 Neutral 0.265 0.443
3 Positive 0.269 0.445



Building our model - attempt 1

Rather than build a linear mixed model, we build a generalised linear mixed model using 
the glmer() function in the {lme4} package. Instead of parameters being tested with a 
t-test, they are compared against the z-distribution. With glmer() we need to specify the 
distribution that our data come from. In this case, our data are binomial so we specify our 
model as follows:

binomial_model <- glmer(DV ~ Condition + 
(1 + Condition | Subject) +

                      (1 + Condition | Item), 
data = tidied_regressions_data, family = binomial)

In this case, the maximal model (i.e., with random slopes for both our random effects) 
fails to converge so we simplify it.



Building our model - attempt 2

So we end up having to drop random slopes from the subject random effect, and the item 
random effect entirely to be able to build a model that converges (and isn’t overfitted).

binomial_model <- glmer(DV ~ Condition + (1 | Subject),
                    data = tidied_regressions_data,
                    family = binomial)



Building our model - attempt 2

summary(binomial_model)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod]
 Family: binomial  ( logit )
Formula: DV ~ condition + (1 | subject)
   Data: tidied_regressions_data

 AIC  BIC   logLik deviance df.resid
   603.7 621.0   -297.9 595.7  549

Scaled residuals:
Min  1Q  Median  3Q Max

-1.3096 -0.6118 -0.4044  0.7636  3.1872

Random effects:
 Groups  Name    Variance Std.Dev.
 subject (Intercept) 0.8363   0.9145  
Number of obs: 553, groups:  subject, 24

Fixed effects:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)    -1.3096 0.2647  -4.947 7.55e-07 ***
ConditionNeutral 0.1093 0.2539   0.431 0.667    
ConditionPositive   0.1162 0.2515   0.462 0.644    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
        (Intr) cndtnN
conditnNtrl -0.485   
conditnPstv -0.488  0.507

There’s not much going on here!



Taking a closer look at our data...

We don’t actually have a huge amount of data, and about three times as many trials where we have zero 
regressions relative to there being a regression.

tidied_regressions_data %>%
  group_by(Condition, DV) %>%
  summarise(n())

# A tibble: 6 x 3
# Groups:   Condition [3]
  condition DV `n()`
  <fct> <dbl> <int>
1 Negative  0   140
2 Negative  1 46
3 Neutral   0   133
4 Neutral   1 48
5 Positive  0   136
6 Positive  1 50



Checking our model assumptions

Instead of checking for normality of residuals, with a generalised linear mixed model using 
binomial data we build a binned residual plot using the binnedplot() function from {arm}. 
We expect 95% of residuals to fall between the jagged lines (+- 2SEs).

binnedplot(fitted(binomial_model), resid(binomial_model, type = "response"))





Modelling ordinal data

Often we might collect data using a Likert scale. These data are ordinal and 
so we should use the cumulative-link mixed model function clmm() from 
the package {ordinal}. Works similarly to LMMs in {lme4} but with one 
or two minor syntax changes…

An example: we had 42 participants rate images of sports on a scale of 0-10 
corresponding to how much they liked each one. Before each rating measure, 
they saw a video of a sport that matched or mismatched the one they then 
had to rate (with a neutral video as baseline).



Modelling ordinal data

We want to know whether people’s ratings were influenced by whether or not the sport they 
rated matched the one they had just seen. Our data file is called ordinal_data_tidied.

We have Subject, and SportType as our random effects.

VideoCondition corresponds to our condition - with the levels “Match”, “Mismatch”, and 
“Neutral”.

Our DV is the column “Ratings”. We need to ensure our DV is coded as an ordered factor using: 
ordinal_data_tidied$Ratings <- as.ordered(ordinal_data_tidied$Ratings)

 



Plotting our data



Building our model

We can build an ordinal mixed model using the clmm() function. Here we model a fixed effect of 
VideoCondition, and random effects of Subject and SportType.

ordinal_model <- clmm(Ratings ~ VideoCondition +
                    (1 + VideoCondition | Subject) +
                    (1 + VideoCondition | SportType),
                  data = ordinal_data_tidied) 

Here we drop the fixed effect to build a null mode - note we make the intercept explicit:

ordinal_model_null <- clmm(Ratings ~ 1 +
                         (1 + VideoCondition | Subject) +
                         (1 + VideoCondition | SportType),
                       data = ordinal_data_tidied) 



Comparing the two models

anova(ordinal_model, ordinal_model_null)

               no.par   AIC  logLik LR.stat df Pr(>Chisq)  
ordinal_model_null 22 10829 -5392.6                    
ordinal_model      24 10826 -5389.0  7.3433  2 0.02543 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We see the two models differ from each other - the model with the fixed effect has the 
lower AIC value.



Interpreting our model

We can use the emmeans() function to run our pairwise comparisons in order to tell which level of our 
VideoCondition factor differs from which other level(s).

emmeans(ordinal_model, pairwise ~ VideoCondition)
$emmeans
 VideoCondition emmean SE  df asymp.LCL asymp.UCL
 Match       0.609 0.262 Inf 0.0948 1.123
 Mismatch    0.294 0.243 Inf   -0.1832 0.771
 Neutral     0.319 0.245 Inf   -0.1624 0.800

Confidence level used: 0.95

$contrasts
 contrast       estimate SE  df z.ratio p.value
 Match - Mismatch 0.3148 0.1019 Inf  3.088  0.0057
 Match - Neutral  0.2902 0.1025 Inf  2.832  0.0129
 Mismatch - Neutral  -0.0245 0.0855 Inf -0.287  0.9556

P value adjustment: tukey method for comparing a family of 3 estimates

We can see that the Match vs 
Mismatch conditions differ from 
each other, as do the Match vs. 
Neutral conditions.We can 
conclude that people’s ratings 
for how much they liked a 
particular sport was influenced 
by whether they had just seen a 
video depicting the sport. When 
the video and sport matched, 
they give the sport a higher 
rating when when the video and 
sport mismatched. 



Summary

● GLMMs are super flexible and much better than building models using data that are 
aggregated.

● But, you do need to be careful that you’re building the right kind of model given your 
design and your outcome variable.

● Make sure you use appropriate coding when you’re looking at main effects and 
interactions - many published papers don’t.

● Always visualise your data before building any model.
● When several possible models can be built - consider which model(s) makes most 

sense given the theoretical framework you’re testing in your experiment.
● When writing up the results of mixed models, ensure to specify all the detail 

necessary for someone else to re-create *exactly* the same analysis as you have run. 


