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Text Mining in R

In any set of texts (such as books, interview transcripts etc.) it’s often useful to be able to quantify 
key aspects of the constituent parts (e.g., words, phrases). For example, some types of language 
may be more common in one interview transcript vs. another, and it can be useful to visualise the 
content of a particular text to compare it with others.



What we’ll cover in this introduction...

Summarising text data.

Sentiment analysis.

Extracting frequency information (and demonstrating Zipf's law).

Characterising text that makes a unique contribution to a particular instance.

N-gram analysis.



The Packages We’ll Be Using

We’ll use the {tidyverse} as we’ll need to do some data wrangling and 
visualisation. We’ll also use {tidytext} for working with text in a tidy format, and 
{gutenbergr} which allows us to connect to Project Gutenberg in order to 
download public domain texts.

library(tidyverse)
library(tidytext)
library(gutenbergr)

http://www.gutenberg.org/


We’ll use the texts of some books by HG Wells 
in our examples...

We are going to download from Project Gutenberg the text of four books by HG Wells. 
We will combine these four books into a dataframe called books

titles <- c("The War of the Worlds",
        "The Time Machine",
        "Twenty Thousand Leagues under the Sea",
        "The Invisible Man: A Grotesque Romance")

books <- gutenberg_works(title %in% titles) %>%
  gutenberg_download(meta_fields = "title")



str(books)
tibble [27,540 × 3] (S3: tbl_df/tbl/data.frame)
 $ gutenberg_id: int [1:27540] 35 35 35 35 35 35 35 35 35 35 ...
 $ text        : chr [1:27540] "The Time Machine" "" "An Invention" "" ...
 $ title       : chr [1:27540] "The Time Machine" "The Time Machine" "The Time Machine" "The Time  

Machine" ...

head(books, n = 8)
# A tibble: 15 x 3
   gutenberg_id text                              title            
          <int> <chr>                             <chr>           
 1           35 "The Time Machine"                The Time Machine
 2           35 ""                                The Time Machine
 3           35 "An Invention"                    The Time Machine
 4           35 ""                                The Time Machine
 5           35 "by H. G. Wells"                  The Time Machine
 6           35 ""                                The Time Machine
 7           35 ""                                The Time Machine
 8           35 "CONTENTS"                        The Time Machine

books %>% distinct(title)
# A tibble: 4 x 1
  title                                 
  <chr>                                 
1 The Time Machine                      
2 The War of the Worlds                 
3 Twenty Thousand Leagues under the Sea 
4 The Invisible Man: A Grotesque Romance



Examining rows 31:40 of the text column of our books tibble:

books$text[31:40]
 [1] " I."                                                                
 [2] " Introduction"                                                      
 [3] ""                                                                   
 [4] ""                                                                   
 [5] "The Time Traveller (for so it will be convenient to speak of him) was"  
 [6] "expounding a recondite matter to us. His pale grey eyes shone and"  
 [7] "twinkled, and his usually pale face was flushed and animated. The fire"
 [8] "burnt brightly, and the soft radiance of the incandescent lights in the"
 [9] "lilies of silver caught the bubbles that flashed and passed in our"  
[10] "glasses. Our chairs, being his patents, embraced and caressed us rather"

Currently the text is all in one column in our dataframe - we need to transform it into tidy format 
such that one word appears in each row. We do this by 'unnesting' the text column and removing 
'stop words'. These are common words (e.g., function words like 'the' and 'of').

all_text <- books %>%
 unnest_tokens(word, text) %>%
 anti_join(stop_words)



all_text
# A tibble: 91,676 x 3
   gutenberg_id title        word    
      <int> <chr>        <chr>   
 1       35 The Time Machine time    
 2       35 The Time Machine machine  
 3       35 The Time Machine invention   
 4       35 The Time Machine contents    
 5       35 The Time Machine introduction
 6       35 The Time Machine ii      
 7       35 The Time Machine machine  
 8       35 The Time Machine iii     
 9       35 The Time Machine time    
10       35 The Time Machine traveller   
# … with 91,666 more rows



Summary Data of “The Time Machine”

all_text %>%
  filter(title == "The Time Machine") %>%
  count(word, sort = TRUE) %>%
  top_n(10)

Selecting by n
# A tibble: 10 x 2
   word          n
   <chr>     <int>
 1 time        207
 2 machine      88
 3 white        61
 4 traveller    57
 5 hand         49
 6 morlocks     48
 7 people       46
 8 weena        46
 9 found        44
10 light        43



Summary Data of “The War of the Worlds”

all_text %>%
  filter(title == "The War of the Worlds") %>%
  count(word, sort = TRUE) %>%
  top_n(10)

Selecting by n
# A tibble: 10 x 2
   word         n
   <chr>    <int>
 1 martians   163
 2 people     159
 3 black      122
 4 time       121
 5 road       104
 6 night      102
 7 brother     91
 8 pit         83
 9 martian     79
10 water       79







Sentiment Analysis

We can use one of the sentiment databases built-in to the tidytext package. The 'bing' database has sentiment 
ratings (positive vs. negative) for almost 7,000 words.

get_sentiments("bing")
# A tibble: 6,786 x 2
   word    sentiment
   <chr>   <chr>    
 1 2-faces negative
 2 abnormal negative
 3 abolish negative
 4 abominable  negative
 5 abominably  negative
 6 abominate   negative
 7 abomination negative
 8 abort   negative
 9 aborted negative
10 aborts  negative
# … with 6,776 more rows



Sentiment Analysis

We can 'join' our all_text data to the sentiment dataset using the inner_join() function from 
{dplyr}

all_text_sentiments <- all_text %>%
  inner_join(get_sentiments("bing"))

head(all_text_sentiments)

# A tibble: 6 x 4
  gutenberg_id title        word   sentiment
     <int> <chr>        <chr>  <chr>    
1       35 The Time Machine golden positive
2       35 The Time Machine shock  negative
3       35 The Time Machine darkness   negative
4       35 The Time Machine trap   negative
5       35 The Time Machine convenient positive
6       35 The Time Machine pale   negative





Examining the proportion of useage of each 
word in each book

book_words <- all_text %>%
  group_by(title) %>%
  count(title, word, sort = TRUE)

total_words <- book_words %>%
  group_by(title) %>%
  summarise(total = sum(n))

book_words <- left_join(book_words, total_words)

book_words %>%
  mutate(proportion = n/total) %>%
  group_by(title) %>%
  arrange(desc(title, proportion)) %>%
  top_n(3) %>%
  select(-n, -total)



Selecting by proportion
# A tibble: 12 x 3
# Groups:   title [4]
   title                              word    proportion
   <chr>                              <chr>      <dbl>
 1 Twenty Thousand Leagues under the Sea  captain  0.0153
 2 Twenty Thousand Leagues under the Sea  nautilus 0.0131
 3 Twenty Thousand Leagues under the Sea  sea      0.00880
 4 The War of the Worlds               martians 0.00722
 5 The War of the Worlds               people   0.00704
 6 The War of the Worlds               black    0.00540
 7 The Time Machine                    time     0.0184
 8 The Time Machine                    machine  0.00781
 9 The Time Machine                    white    0.00541
10 The Invisible Man: A Grotesque Romance kemp     0.0117
11 The Invisible Man: A Grotesque Romance invisible 0.00990
12 The Invisible Man: A Grotesque Romance door     0.00930



Visualizing the data - Zipf's Law



Which words are most important (and most 
unique) to each book?

The bind_tf_idf() function works out the important words for each book by adding a 
weighting to each word - decreasing the weight for commonly used words and increasing the 
weight for words not used much in the overall corpus. This is the term frequency-inverse 
document frequency measure used widely in text analysis.

This allows us to identify what words tend to be uniquely associated with each of the four 
books. This is known as the term frequency-inverse document frequency statistic.

book_words_tf_idf <- book_words %>%
  bind_tf_idf(word, title, n)





N-gram tokenizing

So far we've unnested such that each word is separate. But we can also unnest by n-grams to capture 
sequences of words. In this example, let's look at tokenizing by bigram.

wotw_bigrams <- books %>%
  filter(title == "The War of the Worlds") %>%
  unnest_tokens(bigram, text, token = "ngrams", n = 2) %>%
  separate(col = bigram, into = c("word1", "word2", sep = " ")) %>%
  filter(!word1 %in% stop_words$word) %>%
  filter(!word2 %in% stop_words$word) %>%
  count(word1, word2, sort = TRUE)



Plotting a network graph of bigrams

bigram_graph <- wotw_bigrams %>%
  filter(n > 5) %>%
  graph_from_data_frame()

set.seed(1234)
ggraph(bigram_graph, layout = "fr") +
  geom_edge_link(alpha = .25) +
  geom_node_point(alpha = .25) +
  geom_node_text(aes(label = name), vjust = -.1, hjust = 1.25, size = 3) +
  guides(size = FALSE) +
  xlim(10, 22) +
  theme_void()





Summary

With {tidytext} in R you can extract a lot of information about different texts - you 
might consider applying the approach to interview transcripts (for example) as a way 
of providing quantitative insights in addition to qualitative approaches.

You might even want to use the term frequency-inverse document frequency measure 
as a way of understanding what words or n-grams are associated with particular 
interviews (or sets of interviews) and not with others. 


